Training
Training model
- forwad & backword로 피드백 => 데이터에 맞게 가중치 업데이트
- 경사하상법
Optimizer
- 경사하강법 목표는 loss를 최소화
- SGD ( Stochastic Gradient Descent)
- update gradients per one data
- Momentum
- velocity term keep going weight's previous gradient direction
- AdaGrad
- sum of gradient squared
- RMS-prop
- exponetial moving average
- Adam
- RMS-prop + Momentum
- Adaptive methods(Adam, RMS-prop) is worse to generalize than non-adaptive methods)SGD, Momentim)
Regualization
Regualization
- overfitting을 방지하기 위한 방법
- 손실 함수에 큰 가중치에 불이익
- 모델에 작은 값의 가중치
- L1 Regualization
- adds a penalty to the error function. Penalty term is the sum of absolute values of weights
- L2 Regualization
- Penalty term is the sum of squared values of weights
Drop out
Drop out
- Drop out some weights randomly in training process
- prevents some weights are biased and has big values
Batch normalization
Batch normalization
- 입력 배치 데이터의 평균, 분산에 따라 안정 분포 값이 반환
- make stable input values vefore activation function
Object Detection
object classification : what is the object in an image
object localization : what and where is the single object in an image
object detection : what and where is the multiple object in an image
One stage detection & Two stage dectection
분기 유무 차이
- two-stage : Faster-RCNN
- one-stage : SSD, YOLO
One stage Object detetor architecture
Input => Backbone => Neck => Dense Prediction
- Backbone : feature extractor
- Neck : Merge the different resolution deature maps
- Dense Prediction : Predict score of object and bounding box
Two stage Object detetor architecture
1st forward => 2nd forward
- 1st forward : get the object cnadidate regions
- 2nd forward : classify the object in region proposals
Grid
- predict the objects in each grid cells
- feaure 맵의 픽셀 수
Anchor
- the detector which is predict single bounding box
- predict one object per anchor
- pre-defined bouing box shape
Bounding box, objectness score and class score
- objectness score : Object or not
- Class score : cat or dog or car
softmax
- 예측한 값의 total 값을 1이 되도록 변경
IOU (Intersection over union)
- the metric of how well predicts the bounding box campared with GT box
Non-Maximum Suppression
- Filtering the best predicted boxes using IOU and confidence score
Prepare data
Object detection dataset
- One image, One GT
- Trainig set / Evaluation set / Test set
'딥러닝' 카테고리의 다른 글
자율주행 perception aplication (1) | 2024.01.05 |
---|---|
딥러닝 : YOLO (0) | 2023.12.19 |
딥러닝 : pytorch (0) | 2023.12.14 |
딥러닝: 신경망 기초 (0) | 2023.12.13 |
딥러닝 기초 (1) | 2023.12.12 |